318 research outputs found

    Curvatronics with bilayer graphene in an effective 4D4D spacetime

    Get PDF
    We show that in AB stacked bilayer graphene low energy excitations around the semimetallic points are described by massless, four dimensional Dirac fermions. There is an effective reconstruction of the 4 dimensional spacetime, including in particular the dimension perpendicular to the sheet, that arises dynamically from the physical graphene sheet and the interactions experienced by the carriers. The effective spacetime is the Eisenhart-Duval lift of the dynamics experienced by Galilei invariant L\'evy-Leblond spin 12\frac{1}{2} particles near the Dirac points. We find that changing the intrinsic curvature of the bilayer sheet induces a change in the energy level of the electronic bands, switching from a conducting regime for negative curvature to an insulating one when curvature is positive. In particular, curving graphene bilayers allows opening or closing the energy gap between conduction and valence bands, a key effect for electronic devices. Thus using curvature as a tunable parameter opens the way for the beginning of curvatronics in bilayer graphene.Comment: 8 pages, 3 figures. Revised version with additional materia

    Multi-patch model for transport properties of cuprate superconductors

    Full text link
    A number of normal state transport properties of cuprate superconductors are analyzed in detail using the Boltzmann equation. The momentum dependence of the electronic structure and the strong momentum anisotropy of the electronic scattering are included in a phenomenological way via a multi-patch model. The Brillouin zone and the Fermi surface are divided in regions where scattering between the electrons is strong and the Fermi velocity is low (hot patches) and in regions where the scattering is weak and the Fermi velocity is large (cold patches). We present several motivations for this phenomenology starting from various microscopic approaches. A solution of the Boltzmann equation in the case of N patches is obtained and an expression for the distribution function away from equilibrium is given. Within this framework, and limiting our analysis to the two patches case, the temperature dependence of resistivity, thermoelectric power, Hall angle, magnetoresistance and thermal Hall conductivity are studied in a systematic way analyzing the role of the patch geometry and the temperature dependence of the scattering rates. In the case of Bi-based cuprates, using ARPES data for the electronic structure, and assuming an inter-patch scattering between hot and cold states with a linear temperature dependence, a reasonable agreement with the available experiments is obtained.Comment: 18 pages, 18 figures, to be published on Eur. Phys. J.

    BCS-BEC crossover at finite temperature for superfluid trapped Fermi atoms

    Full text link
    We consider the BCS-BEC crossover for a system of trapped Fermi atoms at finite temperature, both below and above the superfluid critical temperature, by including fluctuations beyond mean field. We determine the superfluid critical temperature and the pair-breaking temperature as functions of the attractive interaction between Fermi atoms, from the weak- to the strong-coupling limit (where bosonic molecules form as bound-fermion pairs). Density profiles in the trap are also obtained for all temperatures and couplings.Comment: revised version, to be published in Phys. Rev. Let

    Extracting the condensate density from projection experiments with Fermi gases

    Full text link
    A debated issue in the physics of the BCS-BEC crossover with trapped Fermi atoms is to identify characteristic properties of the superfluid phase. Recently, a condensate fraction was measured on the BCS side of the crossover by sweeping the system in a fast (nonadiabatic) way from the BCS to the BEC sides, thus ``projecting'' the initial many-body state onto a molecular condensate. We analyze here the theoretical implications of these projection experiments, by identifying the appropriate quantum-mechanical operator associated with the measured quantities and relating them to the many-body correlations occurring in the BCS-BEC crossover. Calculations are presented over wide temperature and coupling ranges, by including pairing fluctuations on top of mean field.Comment: 4 pages, 4 figure

    Enhancement of electron-hole superfluidity in double few-layer graphene

    Full text link
    We propose two coupled electron-hole sheets of few-layer graphene as a new nanostructure to observe superfluidity at enhanced densities and enhanced transition temperatures. For ABC stacked few-layer graphene we show that the strongly correlated electron-hole pairing regime is readily accessible experimentally using current technologies. We find for double trilayer and quadlayer graphene sheets spatially separated by a nano-thick hexagonal boron-nitride insulating barrier, that the transition temperature for electron-hole superfluidity can approach temperatures of 40 K.Comment: 17 pages, 5 figure

    Screening of pair fluctuations in superconductors with coupled shallow and deep bands: a route to higher temperature superconductivity

    Full text link
    A combination of strong Cooper pairing and weak superconducting fluctuations is crucial to achieve and stabilize high-Tc superconductivity. We demonstrate that a coexistence of a shallow carrier band with strong pairing and a deep band with weak pairing, together with the Josephson-like pair transfer between the bands to couple the two condensates, realizes an optimal multicomponent superconductivity regime: it preserves strong pairing to generate large gaps and a very high critical temperature but screens the detrimental superconducting fluctuations, thereby suppressing the pseudogap state. Surprisingly, we find that the screening is very efficient even when the inter-band coupling is very small. Thus, a multi-band superconductor with a coherent mixture of condensates in the BCS regime (deep band) and in the BCS-BEC crossover regime (shallow band) offers a promising route to higher critical temperatures.Comment: 8 pages, 1 figure, including supplemental material

    Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks

    Full text link
    The autoregressive neural networks are emerging as a powerful computational tool to solve relevant problems in classical and quantum mechanics. One of their appealing functionalities is that, after they have learned a probability distribution from a dataset, they allow exact and efficient sampling of typical system configurations. Here we employ a neural autoregressive distribution estimator (NADE) to boost Markov chain Monte Carlo (MCMC) simulations of a paradigmatic classical model of spin-glass theory, namely the two-dimensional Edwards-Anderson Hamiltonian. We show that a NADE can be trained to accurately mimic the Boltzmann distribution using unsupervised learning from system configurations generated using standard MCMC algorithms. The trained NADE is then employed as smart proposal distribution for the Metropolis-Hastings algorithm. This allows us to perform efficient MCMC simulations, which provide unbiased results even if the expectation value corresponding to the probability distribution learned by the NADE is not exact. Notably, we implement a sequential tempering procedure, whereby a NADE trained at a higher temperature is iteratively employed as proposal distribution in a MCMC simulation run at a slightly lower temperature. This allows one to efficiently simulate the spin-glass model even in the low-temperature regime, avoiding the divergent correlation times that plague MCMC simulations driven by local-update algorithms. Furthermore, we show that the NADE-driven simulations quickly sample ground-state configurations, paving the way to their future utilization to tackle binary optimization problems.Comment: 13 pages, 14 figure

    Entanglement between pairing and screening in the Gorkov-Melik-Barkhudarov correction to the critical temperature throughout the BCS-BEC crossover

    Get PDF
    The theoretical description of the critical temperature Tc of a Fermi superfluid dates back to the work by Gor'kov and Melik-Barkhudarov (GMB), who addressed it for a weakly-coupled (dilute) superfluid in the BCS (weak-coupling) limit of the BCS-BEC crossover. The point made by GMB was that particle-particle (pairing) excitations, which are responsible for superfluidity to occur below Tc, and particle-hole excitations, which give rise to screening also in a normal system, get effectively disentangled from each other in the BCS limit, thus yielding a reduction by a factor 2.2 of the value of Tc obtained when neglecting screening effects. Subsequent work on this topic, aimed at extending the original GMB argument away from the BCS limit with diagrammatic methods, has kept this disentangling between pairing and screening throughout the BCS-BEC crossover, without realising that the conditions for it to be valid are soon violated away from the BCS limit. Here, we reconsider this problem from a more general perspective and argue that pairing and screening are intrinsically entangled with each other along the whole BCS-BEC crossover but for the BCS limit considered by GMB. We perform a detailed numerical calculation of the GMB diagrammatic contribution extended to the whole BCS-BEC crossover, where the full wave-vector and frequency dependence occurring in the repeated in-medium two-particle scattering is duly taken into account. Our numerical calculations are tested against analytic results available in both the BCS and BEC limits, and the contribution of the GMB diagrammatic term to the scattering length of composite bosons in the BEC limit is highlighted. We calculate Tc throughout the BCS-BEC crossover and find that it agrees quite well with Quantum Monte Carlo calculations and experimental data available in the unitarity regime.Comment: 21 pages, 11 figure
    corecore